Package: multiblock 0.8.9.0
multiblock: Multiblock Data Fusion in Statistics and Machine Learning
Functions and datasets to support Smilde, Næs and Liland (2021, ISBN: 978-1-119-60096-1) "Multiblock Data Fusion in Statistics and Machine Learning - Applications in the Natural and Life Sciences". This implements and imports a large collection of methods for multiblock data analysis with common interfaces, result- and plotting functions, several real data sets and six vignettes covering a range different applications.
Authors:
multiblock_0.8.9.0.tar.gz
multiblock_0.8.9.0.zip(r-4.5)multiblock_0.8.9.0.zip(r-4.4)multiblock_0.8.9.0.zip(r-4.3)
multiblock_0.8.9.0.tgz(r-4.4-x86_64)multiblock_0.8.9.0.tgz(r-4.4-arm64)multiblock_0.8.9.0.tgz(r-4.3-x86_64)multiblock_0.8.9.0.tgz(r-4.3-arm64)
multiblock_0.8.9.0.tar.gz(r-4.5-noble)multiblock_0.8.9.0.tar.gz(r-4.4-noble)
multiblock_0.8.9.0.tgz(r-4.4-emscripten)multiblock_0.8.9.0.tgz(r-4.3-emscripten)
multiblock.pdf |multiblock.html✨
multiblock/json (API)
NEWS
# Install 'multiblock' in R: |
install.packages('multiblock', repos = c('https://khliland.r-universe.dev', 'https://cloud.r-project.org')) |
Bug tracker:https://github.com/khliland/multiblock/issues
Pkgdown site:https://khliland.github.io
Last updated 17 days agofrom:102a8c136a. Checks:9 OK. Indexed: yes.
Target | Result | Latest binary |
---|---|---|
Doc / Vignettes | OK | Jan 20 2025 |
R-4.5-win-x86_64 | OK | Jan 20 2025 |
R-4.5-linux-x86_64 | OK | Jan 20 2025 |
R-4.4-win-x86_64 | OK | Jan 20 2025 |
R-4.4-mac-x86_64 | OK | Jan 20 2025 |
R-4.4-mac-aarch64 | OK | Jan 20 2025 |
R-4.3-win-x86_64 | OK | Jan 20 2025 |
R-4.3-mac-x86_64 | OK | Jan 20 2025 |
R-4.3-mac-aarch64 | OK | Jan 20 2025 |
Exports:ascaasca_fitblock.data.frameblock.preprocessblockexplccaclassifycoefplotcompnamescorrplotcvanovacvsegmentsdiscodummycodeexplvarextended.model.framegcagpagsvdhogsvdhpcaifajiveloading.weightsloadingplotloadingsloadingweightplotlplslplsCVlplsDatamaagemaageSeqmbplsmbrdamcoamcolorsmfaMSEPmvrValstatspcapcagcapcppcrpermutationplotplsrpoplspredplotR2RMSEProsarosa.classifyscascoreplotscoressmbplssoplssopls_pmsopls_pm_multiplestatistimeplotunique_combosvalidationplot
Dependencies:abindade4backportsbdsmatrixbootbroomcarcarDataclicodetoolscolorspacecowplotcpp11crayonDerivdoBydplyrfansifarverFormulagenalggenericsggplot2gluegtableHDANOVAhmsisobandlabelinglatticeleapslifecyclelme4magrittrMASSMatrixMatrixModelsmgcvmicrobenchmarkminqamixlmmodelrmultcompmunsellmvtnormnlmenloptrnnetnumDerivpbkrtestpillarpixmappkgconfigplotrixplsplsVarSelpracmapraznikprettyunitsprogresspurrrquantregR6rbibutilsRColorBrewerRcppRcppArmadilloRcppEigenRdpackreformulasrlangRSpectrasandwichscalesspSparseMSSBtoolsstringistringrsurvivalTH.datatibbletidyrtidyselectutf8vctrsviridisLitewithrzoo
A. Data handling
Rendered fromvignette_A_data.Rmd
usingknitr::rmarkdown
on Jan 20 2025.Last update: 2021-04-30
Started: 2021-04-07
B. Basic analysis
Rendered fromvignette_B_basic.Rmd
usingknitr::rmarkdown
on Jan 20 2025.Last update: 2021-04-07
Started: 2021-04-07
C. Unsupervised multiblock analysis
Rendered fromvignette_C_unsupervised.Rmd
usingknitr::rmarkdown
on Jan 20 2025.Last update: 2021-09-07
Started: 2021-04-07
D. ASCA
Rendered fromvignette_D_asca.Rmd
usingknitr::rmarkdown
on Jan 20 2025.Last update: 2021-04-07
Started: 2021-04-07
E. Supervised multiblock analysis
Rendered fromvignette_E_supervised.Rmd
usingknitr::rmarkdown
on Jan 20 2025.Last update: 2022-10-29
Started: 2021-04-07
F. Complex multiblock analysis
Rendered fromvignette_F_complex.Rmd
usingknitr::rmarkdown
on Jan 20 2025.Last update: 2021-09-07
Started: 2021-04-07